If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+384t=0
a = -16; b = 384; c = 0;
Δ = b2-4ac
Δ = 3842-4·(-16)·0
Δ = 147456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{147456}=384$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(384)-384}{2*-16}=\frac{-768}{-32} =+24 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(384)+384}{2*-16}=\frac{0}{-32} =0 $
| 2n+5n-6=43 | | -6v+4(v+5)=26 | | -16t^2+384t=2304 | | -3+4x-(1+3x)=1*2x+4 | | 18x+185=15x+200 | | 3(x+2)=5x-6) | | 185+18x=200+15x | | 4x5=24 | | 3(x+2)=5-6) | | 0.5x-4=3.9x-21 | | T=-0.0036h+59 | | x+2(4+x)=27 | | -5y+3(y-7)=27 | | 6−2x=6x−10x+6. | | 5x+30=300 | | 10n2+n-15=0 | | 15x-12=3x+6 | | H+12=4h | | x^2+3x+2.25=1.25 | | 2=6(2)^0.99x-9 | | 17x+101=98+21x | | 2x(x+6=16 | | 101+17x=98+21x | | 103-v=280 | | –6d=–4−5d | | 2.4=4.8/h | | 9a-6=6(a+4) | | 2.4=4.8h | | 4=(3/7)*(3x+14) | | 6(3x-52-7x=25 | | −5x−8=42 | | 6(1300-3x)=2(2700-5x) |